
Introduction to Big Data Formats 1

WHITE PAPER

An Introduction to
Big Data Formats

Understanding Avro, Parquet, and ORC

Introduction to Big Data Formats 2

TABLE OF
CONTENTS

TABLE OF CONTENTS

INTRODUCTION

FORMAT EVALUATION FRAMEWORK

ROW VS. COLUMN

2

3

4

4

SCHEMA EVOLUTION 6

SPLITABILITY 7

COMPRESSION 7

THE FORMATS 8

AVRO 8

PARQUET 9

ORC 9

COMPARISON: WHICH FORMAT TO CHOOSE? 10

CONCLUSION 12

Introduction to Big Data Formats 3

AN INTRODUCTION TO

BIG DATA FORMATS
The goal of this whitepaper is to provide an introduction to the
popular big data file formats Avro, Parquet, and ORC. We aim
to understand their benefits and disadvantages as well as the
context in which they were developed. By illuminating when and
why to use the different formats, we hope to help you choose
the format that is right for the job. The right data format is es-
sential to achieving optimal performance and desired business
outcomes.

If you’re not a database expert, the choices and nuances of big
data formats can be overwhelming. Increasingly, analysts, data
scientists, engineers and business users need to know these
formats in order to make decisions and understand workflows.

What readers can expect from this paper:

• The analyst and data scientist may gain more insight into
why different formats emerged, and some of the trade-offs
required when choosing a format

• The data engineer might better understand the evolution of
data formats and ideal use cases for each type

• The business user will be able to understand why their an-
alysts and engineers may prefer certain formats—and what
“Avro,” “Parquet,” and “ORC” mean!

A TIMELINE OF BIG
DATA FORMATS

Introduction to Big Data Formats 4

Perhaps the most important consideration when selecting a big data format is
whether a row or column-based format is best suited to your objectives. At the
highest level, column-based storage is most useful when performing analytics
queries that require only a subset of columns examined over very large data
sets. If your queries require access to all or most of the columns of each row of
data, row-based storage will be better suited to your needs. Let’s examine these
two types.

To help illustrate the differences between row and column-based data, consider
this table of basic transaction data. For each transaction, we have the customer
name, the product ID, sale amount, and the date.

Let’s first consider the case where the transaction data is stored in a row-based
format. In this format, every row in the set has all the columns contained in
the data’s schema. Row-based storage is the simplest form of data table and
is used in many applications, from web log files to highly-structured database
systems like MySql and Oracle.

In a database, this data would be stored by row, as follows:

Emma,Prod1,100.00,2018-04-02;Liam,Prod2,79.99,2018-
0 4 - 0 2 ; N o a h , P r o d 3 , 1 9 . 9 9 , 2 0 1 8 - 0 4 - 0 1 ; O l i v -
ia,Prod2,79.99,2018-04-03

Before we dive into the ins and outs of different big data formats, it is helpful to
establish a framework to use when evaluating them. In this paper we will use a
framework that takes into account the considerations engineers and analysts
might have when selecting a format, and helps to introduce basic concepts for
non-technical readers. It is not meant to be comprehensive and indeed, your
specific use case might need to consider other variables.

At its core, this evaluation framework has four key considerations: row or
column, schema management, splitability, and compression. Let’s explain each
of these in turn.

A Big Data Format
Evaluation Framework

Evaluation Framework:
Row vs. Column

EVALUATION FRAMEWORK

HOW TO CHOOSE THE RIGHT DATA FORMAT

CONSIDERATION ONE: ROW VS. COLUMN

Exhibit A

Introduction to Big Data Formats 5

To process this data, a computer would read this data from left to right, starting
at the first row and then reading each subsequent row.

Storing data in this format is ideal when you need to access one or more entries
and all or many columns for each entry. For example, let’s say you’re presenting
customer transaction history to an account manager. The account manager
needs to view all the records from her clients (e.g., the four transactions shown
above), and many columns (e.g., the customer, product, price, and date columns
above). That strongly suggests using row-based storage. Row-based data is
most useful when you want to use many of the fields associated with an entry—
and you need to access many entries.

Column-based data formats, as you might imagine, store data by column.
Using our transaction data as an example, in a columnar database this data
would be stored as follows:

E m m a , L i a m , N o a h , O l i v i a ; P r o d 1 , P r o d 2 , P r o d 3 ; P r
od2;100.00,79.99,19.99,79.99;2018-04-02,2018-04-02,
2018-04-01, 2018-04-03

In columnar formats, data is stored sequentially by column, from top to
bottom—not by row, left to right. Having data grouped by column makes it more
efficient to easily focus computation on specific columns of data. Reading only
relevant columns of data saves compute costs as irrelevant columns are
ignored. Having the data stored sequentially by column allows for faster scan
of the data because all relevant values are stored next to each other. There is no
need to search for values within the rows. Column-based storage is also ideal
for sparse data sets where you may have empty values.

Continuing with our transaction data, let’s imagine a company with thousands
of transactions. What is the easiest way to find the highest value sale by date?
It’s really easy to find the answer if you think about it from a columnar
perspective—you just need to know the “Sale Amount” and “Transaction Date.”
If you can fetch those two columns, you can perform the operation and get the
answer.

If you were to do this row-wise, then the database would have to fetch all the
rows and with each row, all the columns. It would unnecessarily incur the
overhead of fetching columns that were not needed for the final result. When
you need to analyze select columns in the data, columnar becomes the clear
choice.

EVALUATION FRAMEWORK

Introduction to Big Data Formats 6

Evaluation Framework:
Schema Evolution When we talk about “schema” in a database context, we are really talking about

its organization—the tables, columns, views, primary keys, relationships, etc.
When we talk about schemas in the context of an individual dataset or data file,
it’s helpful to simplify schema further to the individual attribute level (column
headers in the simplest use case). The schema will store the definition of each
attribute and its type. Unless your data is guaranteed to never change, you’ll
need to think about schema evolution, or how your data schema changes over
time. How will your file format manage fields that are added or deleted?

One of the most important considerations when selecting a data format is how
it manages schema evolution. When evaluating schema evolution specifically,
there are a few key questions to ask of any data format:

• How easy is it to update a schema (such as adding a field, removing or re-
naming a field)?

• How will different versions of the schema “talk” to each other?

EVALUATION FRAMEWORK

To compare the difference, imagine the data values from the four columns of
our table represented as colored boxes, as illustrated above. To analyze “Sale
Amount” (orange) and “Transaction Date” (navy blue) in a row-based format,
a computer would need to read a lot of unnecessary data (the blue and green
boxes) across the whole data set. That requires more time, and higher compute
costs.

By contrast, the column-based representation allows a computer to skip right
to the relevant data, and only read the orange and navy blue boxes. It can ignore
all the blue and green values, reducing the workload and increasing efficiency.
Storing the data by column allows a computer to easily skip these entries, and
bypass reading the entire row. This makes computation and compression more
efficient.

CONSIDERATION TWO: SCHEMA EVOLUTION

Exhibit B - Please refer to Exhibit A for data details.

Introduction to Big Data Formats 7

Evaluation Framework:
Splitability

Evaluation Framework:
Compression Data compression reduces the amount of information needed for the storage

or transmission of a given set of data. It reduces the resources required to store
and transmit data, typically saving time and money. Compression uses
encoding for frequently repeating data to achieve this reduction, done at the
source of the data before it is stored and/or transmitted. Simply reducing the
size of a data file can be referred to as data compression.

Columnar data can achieve better compression rates than row-based data.
Storing values by column, with the same type next to each other, allows you to
do more efficient compression on them than if you’re storing rows of data. For
example, storing all dates together in memory allows for more efficient

By definition, big data is BIG. Datasets are commonly composed of hundreds to
thousands of files, each of which may contain thousands to millions of records
or more. Furthermore, these file-based chunks of data are often being
generated continuously. Processing such datasets efficiently usually requires
breaking the job up into parts that can be farmed out to separate processors. In
fact, large-scale parallelization of processing is key to performance. Your choice
of file format can critically affect the ease with which this parallelization can be
implemented. For example, if each file in your dataset contains one massive
XML structure or JSON record, the files will not be “splittable”, i.e. decomposable
into smaller records that can be handled independently.

All of the big-data formats that we’ll look at in this paper support splitability,
depending on the type of transactions or queries you want to perform. Most of
them play a significant role in the MapReduce ecosystem, which drives the need
for breaking large chunks of data into smaller, more processable ones.

Row-based formats, such as Avro, can be split along row boundaries, as long
as the processing can proceed with one record at a time. If groups of records
related by some particular column value are required for processing, out-of-the
box partitioning may be more challenging for row-based data stored in random
order.

A column-based format will be more amenable to splitting into separate jobs if
the query calculation is concerned with a single column at a time. The
columnar formats we discuss in this paper are row-columnar, which means
they take a batch of rows and store that batch in columnar format. These
batches then become split boundaries.

EVALUATION FRAMEWORK

CONSIDERATION THREE: SPLITABILITY

CONSIDERATION FOUR: COMPRESSION

• Is it human-readable? Does it need to be?
• How fast can the schema be processed?
• How does it impact the size of data?

We’ll answer these questions for each file format in the next section.

Introduction to Big Data Formats 8

Avro
Apache Avro was released by the Hadoop working group in 2009. It is a row-
based format that is highly splittable. The innovative, key feature of Avro is that
the schema travels with data. The data definition is stored in JSON format while
the data is stored in binary format, minimizing file size and maximizing effi-
ciency. Avro features robust support for schema evolution by managing added
fields, missing fields, and fields that have changed. This allows old software to
read the new data and new software to read the old data—a critical feature if
your data has the potential to change.

We understand this intuitively—as soon as you’ve finished what you’re sure is
the master schema to end all schemas, someone will come up with a new use
case and request to add a field. This is especially true for big, distributed sys-
tems in large corporations. With Avro’s capacity to manage schema evolution,
it’s possible to update components independently, at different times, with low
risk of incompatibility. This saves applications from having to write if-else state-
ments to process different schema versions, and saves the developer from hav-
ing to look at old code to understand old schemas. Because all versions of the
schema are stored in a human-readable JSON header, it’s easy to understand
all the fields that you have available.

Avro can support many different programming languages. Because the schema
is stored in JSON while the data is in binary, Avro is a relatively compact option
for both persistent data storage and wire transfer. Avro is typically the format of
choice for write-heavy workloads given its easy to append new rows.

The Formats
For the purpose of this paper, we will focus on the most popular big data for-
mats: Avro, Parquet, and ORC. Each evolved to better address a particular use
case.

THE BIG DATA FORMATS

UNDERSTANDING THE FORMATS

APACHE AVRO: A ROW BASED FORMAT

compression than storing data of various types next to each other—such as
string, number, date, string, date.

While compression may save on storage costs, it is important to also consider
compute costs and resources. Chances are, at some point you will want to
decompress that data for use in another application. Decompression is not
free—it incurs compute costs. If and how you compress the data will be a
function of how you want to optimize the compute costs vs. storage costs for
your given use case.

Introduction to Big Data Formats 9

Parquet
Launched in 2013, Parquet was developed by Cloudera and Twitter (and inspired
by Google’s Dremel query system) to serve as an optimized columnar data store
on Hadoop. Because data is stored by columns, it can be highly compressed
and splittable (for the reasons noted above). Parquet is commonly used with
Apache Impala, an analytics database for Hadoop. Impala is designed for low
latency and high concurrency queries on Hadoop.

The column metadata for a Parquet file is stored at the end of the file, which
allows for fast, one-pass writing. Metadata can include information such as,
data types, compression/encoding scheme used (if any), statistics, element
names, and more.

Parquet is especially adept at analyzing wide datasets with many columns.
Each Parquet file contains binary data organized by “row group.” For each row
group, the data values are organized by column. This enables the
compression benefits that we described above. Parquet is a good choice for
read-heavy workloads.

Generally, schema evolution in the Parquet file type is not an issue and is
supported. However, not all systems that prefer Parquet support schema
evolution optimally. For example, consider a columnar store like Impala. It is
hard for that data store to support schema evolution, as the database needs to
have two versions of schema (old and new) for a table.

APACHE PARQUET: A COLUMN BASED FORMAT

ORC
Optimized Row Columnar (ORC) format was first developed at Hortonworks to
optimize storage and performance in Hive, a data warehouse for
summarization, query and analysis that lives on top of Hadoop. Hive is designed
for queries and analysis, and uses the query language HiveQL (similar to SQL).

ORC files are designed for high performance when Hive is reading, writing, and
processing data. ORC stores row data in columnar format. This row-columnar
format is highly efficient for compression and storage. It allows for parallel
processing across a cluster, and the columnar format allows for skipping of
unneeded columns for faster processing and decompression. ORC files can
store data more efficiently without compression than compressed text files.
Like Parquet, ORC is a good option for read-heavy workloads.

This advanced level of compression is possible because of its index system.
ORC files contain “stripes” of data, or 10,000 rows. These stripes are the data
building blocks and independent of each other, which means queries can skip to

THE BIG DATA FORMATS

APACHE ORC: A ROW-COLUMNAR BASED FORMAT

Introduction to Big Data Formats 10

Comparison
Now that we’ve described in some detail how Avro, Parquet, and ORC function,
it can be useful to compare them. Referring back the the evaluation framework
we outlined at the beginning of the paper, we compared Avro, Parquet and ORC
against their support for splitability, compression, and schema evolution. Based
on analysis of each format’s capabilities, its relative score is noted below.

THE BIG DATA FORMATS

the stripe that is needed for any given query. Within each stripe, the reader can
focus only on the columns required. The footer file includes descriptive
statistics for each column within a stripe such as count, sum, min, max, and if
null values are present.

ORC is designed to maximize storage and query efficiency. According to the
Apache Foundation, “Facebook uses ORC to save tens of petabytes in their data
warehouse and demonstrated that ORC is significantly faster than RC File or
Parquet.”

Similar to Parquet, schema evolution is supported by the ORC file format, but
its efficacy is dependent on what the data store supports. Recent advances
have been made in Hive that allow for appending columns, type conversion, and
name mapping.

WHICH FORMAT TO CHOOSE?

Exhibit C

Introduction to Big Data Formats 11

Depending on the nature of your data set and analytic objectives, you will likely
value some of those features more than others. Because all of these formats are
Apache open source projects, they are constantly being updated to support new
features and functionality. It’s always worthwhile to consult the latest release
for specifics.

The first determination will likely be if your data is better suited to be stored by
row or by column. Transactional data, event-level data, and use cases for which
you will need to leverage many columns are best-suited to row-based data. If
that’s the case, Avro is likely the best choice. Avro is typically the choice for more
write-heavy workloads, since its row-based format is easier to append (similar
to a traditional database structure).

However, if you know your data is best suited to a columnar format, the question
will become Parquet or ORC. In addition to the relative importance of splitability,
compression, and schema evolution support, consideration must be given to
your existing infrastructure. ORC maximizes performance on Hive. Both formats
offer benefits and it will likely come down to which system you have access to
and are most familiar with. Columnar formats are the choice for read-heavy
workloads, owing to the efficiency gains from splitability and compression we
discussed in this paper.

Exhibit C

COMPARISON

Introduction to Big Data Formats 12

In this paper we’ve discussed a helpful framework for evaluating the big data
formats Avro, Parquet, and ORC, an overview of how each format was devel-
oped, and their strengths.

In an ideal world, you’d always choose the data format that was right for your
use case and infrastructure. However, sometimes we don’t get to decide how
we receive the data we need to work with. Data may be coming in any format—
CSV, JSON, XML, or one of the big data formats we discussed. Converting data
from the incoming format to the one optimally suited for a specific processing
need can be a laborious process. It may include detecting, evolving, or
modifying schemas, combining or splitting files, and applying partitioning. This
is in addition to managing the difference in frequency of incoming data to the
desired frequency of output. All things considered, converting data formats can
significantly increase workloads.

Nexla makes these data format conversions easy. Point Nexla to any
source—such as a datastore with Avro files—and Nexla can extract, transform,
and convert the data into the preferred format. Companies use this capability to
convert JSON CloudTrail logs into Parquet for use in Amazon Athena, or ingest
Avro event data to process into database tables. Perhaps your system outputs
data into Avro but you have a machine learning project that could benefit from
Parquet. No matter how you’re getting the data, with Nexla you can easily create
the pipeline to convert it into the format that works for you.

About Nexla:
Nexla is a scalable Data Operations platform that can manage
inter-company data collaboration, securely and in real-time. Nexla automates
DataOps so companies can quickly derive value from their data, with minimal
engineering required. Our secure platform runs in the cloud or on-premise. It
allows business users to send, receive, transform, and monitor data in their
preferred format via an easy to use web interface.

Conclusion
CHOOSE THE RIGHT FORMAT FOR THE JOB

CONCLUSION

 Nexla, Inc. 475 El Camino Real Suite 305, Millbrae, CA 94030 USA | nexla.com | Copyright ©2018 Nexla, Inc.

